Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne flavivirus that infects humans. At present, there are no specific antiviral drugs to treat DENV infection and vaccine development has met with challenges. DENV encodes two glycosaminoglycan (GAG) binding proteins; Envelope (E) and non-structural protein 1 (NS1). While previous work has validated the use of GAG analogues as inhibitors of E mediated virus-cell attachment, their potential for antiviral intervention in NS1 protein toxicity has not yet been explored. Here, we investigate the potential of the heparan sulfate mimetic PG545 as a dual purpose compound to target both DENV virion infectivity and NS1 function. In comparison to a non-sulfated analogue, we show that PG545 potently inhibits DENV infectivity with no cytotoxic effect. Against NS1, PG545 completely blocks the induction of cellular activation and abolishes NS1-mediated disruption of endothelial monolayer integrity. Furthermore, PG545 treatment moderately improves survival from lethal DENV challenge in a murine model. At peak disease, PG545-treated mice have lower viremia, circulating NS1 and serum TNF-α. Consistent with anti-NS1 activity, PG545 treatment also reduces systemic vascular leakage caused by DENV infection in vivo. Taken together, these findings demonstrate that the dual targeting of DENV virions and NS1 using GAG analogues offers a new avenue for DENV drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.