Abstract

The delivery and accumulation of therapeutic drugs into cancer cells without affecting healthy cells are a major challenge for antitumor therapy. Here, we report the synthesis of a liposomal hybrid gold nano-assembly with enhanced photothermal activity for lung cancer treatment. The core components of the nano-assembly include gold nanorods coated with a mesoporous silica shell that offers an excellent drug-loading surface for encapsulation of doxorubicin. To enhance the photothermal capacity of nano-assembly, IR 780 dye was loaded inside a thermo-sensitive liposome, and then, the core nano-assembly was wrapped within the liposome, and GE-11 peptide and folic acid were conjugated onto the surface of the liposome to give the final nano-assembly [(GM@Dox) LI]-PF. The dual targeting approach of [(GM@Dox) LI]-PF leads to enhanced cellular uptake and improves the accumulation of nano-assemblies in cancer cells that overexpress the epidermal growth factor receptor and folate. The exposure of near-infrared laser irradiation can trigger photothermal-induced structural disruption of the nano-assembly, which allows for the precise and controllable release of Dox at targeted sites. Additionally, chemo-photothermal therapy was shown to be 11 times more effective in cancer cell treatment when compared to Dox alone. Our systematic study suggests that the nano-assemblies facilitate the cancer cells undergoing apoptosis via an intrinsic mitochondrial pathway that can be directly triggered by the chemo-photothermal treatment. This study offers an appealing candidate that holds great promise for synergistic cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call