Abstract
To achieve higher bioavailability by taking advantage of the complex biological environment, the development of drug delivery systems (DDSs) keeps progressing. Through supramolecular technology, building blocks with different properties and functions could be combined in a controlled manner, realizing programmable drug delivery with high efficiency. In this study, we constructed a supramolecular DDS (SDDS) with charge-reversal polyanions and fluorescent polycations with reduction cleavable camptothecin (CPT) attached. During the supramolecular assembly process, the prodrug exhibited a morphological change from cubelike to rodlike and its fluorescence was significantly enhanced. Programmed drug delivery was achieved by a dual response of the extracellular acid and intracellular reductive environment. In vitro studies of the SDDS made it possible to visualize faster cellular uptake at pH 6.8 than at pH 7.4 because of the re-exposure of cationic charges and subsequent successful delivery of CPT to the cell n...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.