Abstract
Considerable luminescence dissymmetry factor (glum) is vital for application implementation of circularly polarized luminescence (CPL) materials. Moreover, a dual CPL switch has promising prospects in high-security encryption and sensor devices. Herein, we designed and synthesized an emissive chiral nematic liquid crystal (N*-LC) by doping a luminescent chiral additive (NO2-CS-C6-Chol) into a nematic liquid crystal (5CB). The helical assembly structure produced by inducing the formation of N*-LC endows the prepared emissive N*-LC with a larger glum value. With the increase of the doping concentration from 1 to 10 wt %, the helical pitch (P) of N*-LC gradually decreases from 25.48 to 3.92 μm. The corresponding glum value increases first, reaches the maximum value (-0.38) at 6 wt %, and then decreases slightly. Further, the prepared emissive N*-LC doped with 6 wt % NO2-CS-C6-Chol is injected into an indium-tin oxide (ITO)-coated LC cell, to which a direct current (DC) electric field is applied. The glum value can be repeatedly shuttled between the "on" and "off" state by adjusting the applied voltage. Meanwhile, owing to the inherent thermal dependence of the liquid crystal phase structure, the glum value can also be switched between the on and off state by regulating the temperature. Therefore, an electrically controlled and thermocontrolled dual CPL switching device is successfully constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.