Abstract
(+)-Nopinone, prepared from naturally occurring (-)-beta-pinene, was converted to the two regioisomeric amino alcohols 3-MAP and 2-MAP in very good yield and excellent isomeric purity. Amino alcohol 3-MAP was synthesized by converting (+)-nopinone to the corresponding alpha-ketooxime. This was reduced to the primary amino alcohol and was converted to the morpholino group through a simple substitution reaction. 3-MAP was characterized by X-ray crystallography, which displayed the rigidity of the pinane framework. Amino alcohol 2-MAP was prepared from its trans isomer 2, which in turn was synthesized via hydroboration/oxidation of the morpholine enamine of (+)-nopinone. Two-dimensional NMR was used to characterize amino alcohol 2-MAP, and NOE was used to confirm its relative stereochemistry. These amino alcohols were employed as chiral auxiliaries in the addition of diethylzinc to benzaldehyde to obtain near-quantitative asymmetric induction in the products. The use of 3-MAP yielded (S)-phenylpropanol in 99% ee, and its regioisomer 2-MAP gave the opposite enantiomer, (R)-phenylpropanol, also in 99% ee. Other aromatic, aliphatic, and alpha,beta-unsaturated aldehydes were implemented in this method, affording secondary alcohols in high yield and enantiomeric excess. Amino alcohols 2-MAP and 3-MAP were also found to be useful in the dimethylzinc addition reaction, both catalyzing the addition to benzaldehyde with nearly quantitative ee. Regioisomeric amino alcohols 2-MAP and 3-MAP, even though they were prepared from one enantiomer of nopinone, provide antipodal enantiofacial selectivity in the dialkylzinc addition reaction. This circumvents the necessity to synthesize amino alcohols derived from (-)-nopinone, which in turn requires the unnatural (+)-beta-pinene. Possible mechanistic insights are offered to explain the dual stereoselectivity observed in the diethylzinc addition reaction involving regioisomeric, pseudo-enantiomeric amino alcohols 3-MAP and 2-MAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.