Abstract

Protein prenylation is an important post-translational modification that regulates protein interactions, localizations, and signaling pathways in normal functioning of eukaryotic cells. It is also a critical step in the oncogenic developments of various cancers. Direct identification of native protein prenylation by mass spectrometry (MS) has been challenging due to high hydrophobicity and the lack of an efficient enrichment technique. Prior MS studies of prenylation revealed that prenyl peptides readily generate high-intensity fragments after neutral loss of the prenyl group (R group), and more recent investigation of oxidized prenyl peptides discovered more consistent neutral loss of the oxidized prenyl group (RSOH group). Here, a dual-stage neutral loss MS3 (DS-NLMS3)-based strategy is therefore developed by combining both gas-phase cleavable properties of the prenyl thioether bond and mono-oxidized thioether to improve the large-scale identification of prenylation. Both neutral losses can individually and distinctively confirm the prenylation type in MS2 and the sequence of the prenyl peptide upon targeted MS3 fragmentation. This dual-faceted NLMS3 strategy significantly improves the confidence in the identification of protein prenylation from large-scale samples, which enables the unambiguous identification of prenylated sites of the spiked low-abundance farnesyl peptide and native prenyl proteins from mouse macrophage cells, even without prior enrichment during sample preparation. The ease of incorporating this strategy into the prenylation study workflow and minimum disruption to the biological lipidome are advantageous for unraveling unknown native protein prenylation and further developments in profiling and quantifying prenylome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.