Abstract

Structural and compositional similarity to the natural extracellular matrix (ECM) is a main characteristic of an ideal scaffold for tissue regeneration. In order to resemble the fibrous/gel structure of skin ECM, a multicomponent scaffold was fabricated using biopolymers with structural similarity to ECM and wound healing properties i.e., chitosan (CS), gelatin (Gel) and hyaluronic acid (HA). The CS-Gel and CS-HA nanofibers were simultaneously electrospun on the collector through dual-electrospinning technique. The presence of polymers, possible interactions, and formation of polyelectrolyte complex were proven by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The noncomplex component of CS-HA fibers formed a gel state when the scaffold was exposed to the aqueous media, while the CS-Gel fibers reserved their fibrous structure, resulting in formation of fibrous/gel structure. The CS-Gel/CS-HA scaffold showed significantly higher cell proliferation (109%) in the first 24 h comparing with CS (90%) and CS-Gel (96%) scaffolds. Additionally, the initial cell adhesion improved by incorporation of HA. The in-vivo wound healing results in rat elucidated more wound healing capability of the CS-Gel/CS-HA scaffold in which new tissue with most similarity to the normal skin was formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call