Abstract

Activation of the mitogen-activated protein kinase (MAPK) cascade after Toll-like receptor stimulation enables innate immune cells to rapidly activate cytokine gene expression. A balanced response to signals of infectious danger requires that cellular activation is transient. Here, we identify the MAPK phosphatase dual specificity phosphatase 1 (DUSP1) as an essential endogenous regulator of the inflammatory response to lipopolysaccharide (LPS). DUSP1-deficient (DUSP1−/−) bone marrow–derived macrophages showed selectively prolonged activation of p38 MAPK and increased cytokine production. Intraperitoneal challenge of DUSP1−/− mice with LPS caused increased lethality and overshooting production of interleukin (IL)-6 and tumor necrosis factor α. Transcriptional profiling revealed that DUSP1 controls a significant fraction of LPS-induced genes, which includes IL-6 and IL-10 as well as the chemokines CCL3, CCL4, and CXCL2. In contrast, the expression of the important mediators of endotoxin lethality, interferon γ and IL-12, was not significantly altered by the absence of DUSP1. These data together demonstrate a specific regulatory role of DUSP1 in controlling a subset of LPS-induced genes that determines the outcome of endotoxin shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.