Abstract

Two‐group neutron diffusion theory has been applied to two concentric cylindrical regions representing borehole and formation to show that the ratio of thermal neutron flux at two appropriately large distances along the axis is virtually identical to the epithermal flux ratio, and is a measure of a single epithermal parameter of the formation, viz., the slowing down length. The slowing down length is most strongly dependent on hydrogen content. It is shown that variations in salinity of the liquid in the formation or the borehole and uncertainties in borehole size have relatively little effect on the flux ratio. Experiments in a borehole model showed that the thermal flux ratio does not depend on eccentricity of location of the logging tool in the borehole. Fits of theory to experiment allowed determination of slowing down lengths for Pu‐Be neutrons in salt water filled sandstone at two porosities for which experimental values have not previously been available. These investigations suggest that an improved porosity log can be obtained by use of 70‐ and 90‐cm source‐detector spacings with a neutron source of [Formula: see text] neutrons/sec or greater. Proportional counters containing [Formula: see text] are recommended as detectors. Such a system employing flux ratios is expected to be insensitive to casing and cement in cased holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.