Abstract
The homotopy analysis method is applied to study the boundary layer flow over a flat plate which has a constant velocity opposite in direction to that of the uniform mainstream. The dual solutions in series expressions are obtained with the proposed technique, which agree well with numerical results. Note that, by introducing a new auxiliary function β( z), the bifurcation of the solutions is obtained. This indicates that the homtopy analysis method is a open system, in the framework of this technique, we have great freedom to choose the auxiliary parameters or functions. As a result, complicated nonlinear problems may be resolved in a simple way. The present work shows that the homotopy analysis method is an effective tool for solving nonlinear problems with multiple solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.