Abstract

Herein, a dual-signal amplification electrochemical sensing has been proposed for the ultrasensitive detection of uranyl ions (UO22+) by integration of gold nanoparticles (AuNPs) and hybridization chain reaction (HCR)-assisted synthesis of silver nanoclusters (AgNCs). In this sensing platform, AuNPs are used as an ideal signal amplification carrier, aiming at increasing the loads of UO22+-specific DNAzyme on the gold electrode. In the presence of UO22+, UO22+-specific DNAzyme can be activated, leading to the cleavage of substrate strands (S-DNA). Then, HCR is triggered to produce long dsDNA through hybridization the probe with the ssDNA on the electrode surface. As a result, an amplified electrochemical response can be detected by inserting a large amount of AgNCs generated in situ using dsDNA as template. Featured with amplification efficiency, good specificity and high sensitivity, the strategy could quantitatively detect UO22+ down to 6.2 pM with a linear calibration range from 20 pM to 5000 pM. The proposed sensing platform has been also successfully demonstrated the practical application of detecting UO22+, indicating that the developed method has the potential applications and can open up a new avenue for highly sensitive detection of UO22+ in environmental monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call