Abstract

Two novel dual-photosensitized stable complexes, namely [Eu(dpq)(BTFA)3] (1) and [Tb(dpq)(BTFA)3] (2), have been successfully assembled via a mixed ligand approach using dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and 3-benzoyl-1,1,1-trifluoroacetone (BTFA). The crystallographic data reveal mononuclear lanthanide cores in both 1 and 2, in which each eight-coordinated Ln(III) ion is located in a slightly distorted dodecahedron (D2d). The room-temperature photoluminescence spectra of complexes 1 and 2 indicate that both BTFA and dpq can effectively sensitize Eu(III) and Tb(III) characteristic luminescence. Moreover, heterometallic Ln-complexes can be synthesized, leading to a new series of differently doped EuxTb1-x complexes. Luminescence experiments on them reveal dual-emission peaks of Eu3+ and Tb3+, which lead to a gradual change in the luminous colour between yellow-green, yellow, orange, orange-red and red upon increasing the Eu3+ content. On the basis of the intrinsic strong emission properties and nontoxic nature of complexes 1 and 2, we explore their potential application as cellular imaging agents. Fluorescence microscopy data suggest the cytosolic and nuclear localization of 1 and 2 in HeLa and MCF-7 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call