Abstract
The detection of hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from a blood sample can be a very powerful noninvasive approach for the early detection and therapy of liver cancer. However, the extreme rarity of tumor cells in blood containing billions of other cells makes the capture and identification of CTCs with sufficient sensitivity and specificity a real challenge. Here, a magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for HCC CTC detection is reported for the first time. The biosensor consists of two basic elements: anti-ASGPR antibody-Fe3 O4 @Ag magnetic nanoparticles and anti-GPC3 antibody-Au@Ag@DTNB nanorods. According to the dual-selectivity of the anti-ASGPR and anti-GPC3 antibodies and the dual-enhancement SERS signal of the MNPs silver shell and the Au@Ag NRs SERS tags, a limit of detection of 1 cell mL-1 for HCC CTC in human peripheral blood samples with a linear relationship from 1 to 100 cells mL-1 can be obtained. The system shows good performance in real serum, which suggests it may be a promising tool for HCC clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.