Abstract
This study investigated a ternary CdS/TiO2/g-C3N4 heterojunction for degrading synthetic dyes and hydrogen production from aqueous media through visible light-initiated photocatalytic reactions. CdS, TiO2, and g-C3N4 were combined in different mass ratios through a simple hydrothermal method to create CdS/TiO2/g-C3N4 composite photocatalysts. The prepared heterojunction catalysts were investigated by using FTIR, XRD, EDX, SEM, and UV-visible spectroscopy analysis for their crystal structures, functional groups, elemental composition, microtopography, and optical properties. The rhodamine B dye was then degraded by using fully characterized photocatalysts. The maximum dye degradation efficiency of 99.4% was noted in these experiments. The evolution rate of hydrogen from the aqueous solution with the CdS/TiO2/g-C3N4 photocatalyst remained 2910 μmol·h-1·g-1, which is considerably higher than those of g-C3N4, CdS, CdS/g-C3N4, and g-C3N4/TiO2-catalyzed reactions. This study also proposes a photocatalytic activity mechanism for the tested ternary CdS/TiO2/g-C3N4 heterojunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.