Abstract

A dual S-scheme g-C3N4/Ag3PO4/g-C3N5 heterojunction was prepared by decomposition methods, and it displayed enhanced performance to degrade tetracycline hydrochloride with the ideal stability under different water substrates and ions. Comparing with three single components, as g-C3N4, g-C3N5, and Ag3PO4, the dual S-scheme g-C3N4/Ag3PO4/g-C3N5 heterojunction displayed 4.4-, 3.4-, and 2.5-times enhancements in the tetracycline hydrochloride removal. Based on the dynamics analyses for charge carriers and band structure calculations, two channels of molecular oxygen activation (MOA) between Ag3PO4 and g-C3N4 (and g-C3N5) were confirmed. More importantly, according to this double consumption process of excited electrons, dual S-scheme g-C3N4/Ag3PO4/g-C3N5 could suppress the charge recombination, which was the key point to boosting photocatalytic activity. Moreover, the determination of intermediates also supported the vital role of MOA during these photocatalytic reactions. this report of two reactive sites in MOA that generate reactive oxygen species in a “V” type band structure. The electronic dynamic in the reaction was also testified by several detections, indicating the enhanced charge separation and migration from internal field effect and electron trapping from dual S-scheme mechanism. This work provides a new research direction for the design and mechanism analysis of dual S-scheme photocatalysts

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.