Abstract

Each ovarian cycle, the mammary gland epithelium rotates through a sequence of hormonally regulated cell proliferation, differentiation and apoptosis. These studies investigate the role of macrophages in this cellular turnover. Macrophage populations and their spatial distribution were found to fluctuate across the cycle. The number of macrophages was highest at diestrus, and the greatest number of macrophages in direct contact with epithelial cells occurred at proestrus. The physiological necessity of macrophages in mammary gland morphogenesis during the estrous cycle was demonstrated in Cd11b-Dtr transgenic mice. Ovariectomised mice were treated with estradiol and progesterone to stimulate alveolar development, and with the progesterone receptor antagonist mifepristone to induce regression of the newly formed alveolar buds. Macrophage depletion during alveolar development resulted in a reduction in both ductal epithelial cell proliferation and the number of alveolar buds. Macrophage depletion during alveolar regression resulted in an increased number of branch points and an accumulation of TUNEL-positive cells. These studies show that macrophages have two roles in the cellular turnover of epithelial cells in the cycling mammary gland; following ovulation, they promote the development of alveolar buds in preparation for possible pregnancy, and they remodel the tissue back to its basic architecture in preparation for a new estrous cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.