Abstract

CD97, an adhesion G-protein coupled receptor highly expressed in glioblastoma (GBM), consists of two noncovalently bound domains: the N-terminal fragment (NTF) and C-terminal fragment. The C-terminal fragment contains a GPCR domain that couples to Gα12/13, while the NTF interacts with extracellular matrix components and other receptors. We investigated the effects of changing CD97 levels and its function on primary patient-derived GBM stem cells (pdGSCs) invitro and invivo. We created two functional mutants: a constitutively active ΔNTF and the noncleavable dominant-negative H436A mutant. The CD97 knockdown in pdGSCs decreased, while overexpression of CD97 increased tumor size. Unlike other constructs, the ΔNTF mutant promoted tumor cell proliferation, but the tumors were comparable in size to those with CD97 overexpression. As expected, the GBM tumors overexpressing CD97 were very invasive, but surprisingly, the knockdown did not inhibit invasiveness and even induced it in noninvasive U87 tumors. Importantly, our results indicate that NTF was present in the tumor core cells but absent in the pdGSCs invading the brain. Furthermore, the expression of noncleavable H436A mutant led to large tumors that invade by sending massive protrusions, but the invasion of individual tumor cells was substantially reduced. These data suggest that NTF association with CD97 GPCR domain inhibits individual cell dissemination but not overall tumor invasion. However, NTF dissociation facilitates pdGSCs brain infiltration and may promote tumor proliferation. Thus, the interplay between two functional domains regulates CD97 activity resulting in either enhanced cell adhesion or stimulation of tumor cell invasion and proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call