Abstract
Inhaled carbon nanotubes (CNTs) can deposit in the deep lung, where they interact with pulmonary surfactant (PS) to form coronas, potentially altering the fate and toxicity profile of CNTs. However, the presence of other contaminants in combination with CNTs may affect these interactions. Here, we used passive dosing and fluorescence-based techniques confirm the partial solubilization of BaPs adsorbed on CNTs by PS in simulated alveolar fluid. MD simulations were performed to elucidate the competition of interactions between BaPs, CNTs, and PS. We found that PS play two opposing roles in altering the toxicity profile of the CNTs. First, the formation of PS coronas reduce CNTs’ toxicity by decreasing the hydrophobicity of the CNTs and decreasing their aspect ratio. Second, the interaction with PS increases the bioaccessibility of BaP through interactions with PS, which may exacerbate the inhalation toxicity of CNTs. These findings suggest that the inhalation toxicity of PS-modified CNTs should consider the bioaccessibility of coexisting contaminants, with the CNT size and aggregation state playing an important role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.