Abstract
Cadmium (Cd) is a nephrotoxicant that primarily damages renal proximal tubular cells. Endoplasmic reticulum (ER) stress is mechanistically linked to Cd-induced renal injury. Inositol-requiring enzyme 1 (IRE-1α) is the most conserved ER stress transducer protein, which has both kinase and endonuclease activities. This study aimed to investigate whether the two enzymatic activities of IRE-1α have different effects in its regulation of Cd-induced apoptosis. Human proximal tubular (HK-2) cells were treated with 20 μM CdCl2 for 0−24 h, and mice were fed with Cd-containing drinking water (100−400 mg/L) for 24 weeks. We found that Cd increased cell apoptosis in HK-2 cells and mouse kidneys in a time-dependent manner. Such cytotoxicity was correlated with activation of ER stress, evidenced by upregulation of IRE-1α and its target protein spliced X-box binding protein-1 (XBP-1 s). Interestingly, inhibition of IRE-1α kinase activity by KIRA6 was more protective against Cd-induced apoptosis than inhibition of its RNase activity by STF-083010. Mechanistically, Cd promoted the binding of IRE-1α with signal transducer and activator of transcription-3 (STAT3) leading to elevated phosphorylation of STAT3 at Ser727 and thus inactivation of STAT3 signaling, which resulted in aggravation of Cd-induced apoptosis in HK-2 cells. Collectively, our findings indicate that IRE-1α coordinate ER stress and STAT3 signaling in mediating Cd-induced renal toxicity, suggesting that targeting IRE-1α might be a potential therapeutic approach for Cd-induced renal dysfunction and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.