Abstract
Intracellular pH (pHi), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H+ ions (e.g. produced by respiration) are extruded by transporters such as Na+/H+ exchange, or neutralized by HCO3− taken up by carriers such as Na+-HCO3− cotransport. Using fluorescence pHi imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H+ efflux and HCO3− influx, largely sensitive to dimethylamiloride and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS), respectively. The magnitude of HCO3− influx was comparable among the cell lines and may represent a constitutive element of tumor pHi regulation. In contrast, H+ efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO3− flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (∼10,000 cells) was highly non-uniform and produced low pHi at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H+ flux more than HCO3− flux. HCO3− flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO2/HCO3−, acid extrusion by H+ flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H+ transporters require extracellular mobile pH buffers, such as CO2/HCO3−, to overcome low H+ ion mobility and chaperone H+ ions away from cells. CO2/HCO3− exerts a dual effect: as substrate for membrane-bound HCO3− transporters and as a mobile buffer for facilitating extracellular diffusion of H+ ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO2/HCO3− is important for maintaining uniformly alkaline pHi in small, non-vascularized tumor growths and may be important for cancer disease progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.