Abstract
The wide development of hydrogels had been used in many filed due to the high water-containing and tough three-dimensional structure, however, the poor mechanical and multi-functional properties of hydrogel can be limited in its applications deeply. Herein, the dual responsive self-healing hydrogels with tough mechanical properties were manufactured by dual-physical cross-linking based on biodegradable aliphatic polycarbonate. Choosing the soft and hard segments to design the polymeric hydrogel not only can facilitate the dual-dynamic bonding interactions but also the resilient hydrogels possess robust and controllable mechanical strength (6.51 MPa). Furthermore, the results of swelling and stability tests of the materials indicated that the swelling ability of the biodegradable hydrogels can be regulated by the hydrophilic group, and the maximal swelling ratio in water and the equilibrium water content is 66% and 40%, respectively. It is worth mentioning that the tough hydrogels embrace dual-responsive high efficiency of self-healing ability, and the self-healing time is 2 h at 50 °C or 10 h under pH = 5, suggesting that the obtained hydrogels can respond to temperature and pH value to drive the fracture interface for fast self-healing, which will offer new opportunities for stimuli-responsive materials and wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.