Abstract

Immobilizing cellulase for improving its hydrolysis activity and recyclability is critical for a cost-effective and environment-friendly conversion of cellulosic biomass. However, developing a strategy for achieving a high mass-transfer rate and good separation efficiency between an insoluble cellulose substrate and cellulase remains difficult. Instead of the traditional method, a single-enzyme molecular modification method is used in this study. To modify cellulase and provide it with a temperature-pH dual responsive property, systemized poly(acrylic-acrylonitrile) (PAA-PAN) molecular arms are used. The modified cellulase can reversibly transform between liquid and solid phases. In the liquid phase, the modified cellulase can adjust its active center, increasing its hydrolysis efficiency and separation efficiency. Cellulase and glucose products can be easily separated in the solid phase, allowing the reuse of cellulase. The results show that the modified cellulase's hydrolysis efficiency is comparable to that of free cellulase and that the modified enzyme preserves more than 60% of its initial activity after 15 batches of efficient hydrolysis. Thus, the proposed modification route considerably lowers the cost of cellulose enzymatic hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.