Abstract
Diverse nanomotors with advanced motion manipulation have been proposed to revolutionize the way problems in many fields are solved. However, rational and controllable synthetic methods of multifunctional nanomotor are still limited. Herein, dual-responsive MnO2-loaded carbonaceous nanobottle motors (MnO2 NBMs) are developed through an interfacial superassembly strategy. Asymmetric carbonaceous nanobottles are first synthesized, and the reductive carbonaceous shell induces an oxidation-reduction reaction with KMnO4 for in-situ growth of MnO2 nanosheets, which enables the nanomotor to perform either self-diffusiophoretic or self-thermophoretic motion in response to H2O2 and near-infrared light, respectively. Inspired by bioaffinity sensing, the nanomotors are sequentially assembled with functional nanoparticles and hairpin DNA to construct swimming functional MnO2 NBMs (MnO2 FNBMs) probes. The probes can move around complex samples to improve target miRNA transport and accelerate receptor-target interaction. Coupling with the photocurrent-signal amplification, the self-assembly of photoelectrochemical (PEC) biosensors has been achieved for sensitive microRNA detection. Trace amounts of miRNA-155 can be quickly detected with a wide detection range (100 fM to 100nM). Moreover, the direct detection of microRNA in tumor cell lysates by the biosensor is demonstrated. Given the merits of automation and miniaturization, the proposed strategy provides a promising method for fast and effective self-assembly of biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.