Abstract

With the deepening of tumor targeting research, the application of intelligent responsive drug carriers in the field of controlled drug release has become more and more extensive, and multiple responsive nano drug carriers have attracted greater attention. In this paper, nanoparticles with gold nanorods (GNR) as the core, mesoporous silica (mSiO2) doped with hydroxyapatite (HAP) as the inorganic hybrid shell and physically loaded with doxorubicin hydrochloride (DOX·HCl) are prepared (DOX/GNR/mSiO2/HAP, DNPs). DNPs nanoparticles have a typical core-shell structure. The gold nanorods as the core have extremely high light-to-heat conversion efficiency. Under the irradiation of near-infrared light, light can be converted into heat. The inorganic hybrid shell is a drug reservoir. The excellent photothermal response of gold nanorods combined with the excellent pH response of hydroxyapatite can obtain slow and sustained release of chemotherapeutic drugs. In vivo and in vitro anti-tumor cell activity study show that the DNPs in the laser showed stronger cytotoxicity than the other groups. Compared to chemotherapy and phototherapy alone, DNPs selectively accumulate in the tumor through the enhanced penetration and retention (EPR) effects. and have the unified function of hyperthermia and chemotherapy, and have significant inhibitory effect on tumor growth. Therefore, this study provides a new idea for the study of the combination of multiple therapeutic methods in the treatment of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call