Abstract

Supramolecular construction of multistimuli platform for drug delivery is a challenging task. In this work, a pH and GSH (glutathione) dual-responsive bola-type supramolecular amphiphile was successfully fabricated by the complexation between a water-soluble pillar[5]arene (WP5) and a bolaform naphthalimide guest (G) in water. The resulting bola-type amphiphile further self-assembled into supramolecular binary vesicles, which could be disassembled by low pH, a high-GSH-concentration environment, or both. Furthermore, the results of drug loading and releasing tests showed that doxorubicin (DOX), the hydrophobic anticancer drug, could be successfully encapsulated into the Stern region of the obtained supramolecular vesicles and generated the DOX-loaded vesicles with good drug-loading efficiency. Moreover, the obtained DOX-loaded vesicles displayed efficient and rapid DOX release at a simulated tumor microenvironment with low-pH or excess-GSH conditions or both. Significantly, cytotoxicity experiments revealed that the DOX-loaded supramolecular vesicles could obviously improve the anticancer efficiency of free DOX for tumor cells while remarkably reducing its side effects for normal cells. In vitro cellular uptake and subcellular localization assays further proved that these smart drug nanovehicles, entering cancer cells mainly via endocytosis, could cause excellent drug accumulation in cancer cells. The present study provides a successful example with which to rational design an effective bola-type stimuli-responsive supramolecular nanocarrier, which might have wide potential applications in the construction of various controlled drug-delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call