Abstract

Convex sets of probability measures, frequently encountered in probability theory and statistics, can be transparently analyzed by means of dual representations in a function space. This paper introduces totally bounded spaces, whose structure is defined by a set of bounded real-valued functions, as a general framework for studying such representations. The reinterpretation of classical theorems in this framework clarifies the role of compactness and leads to simple existence criteria. Applications include results on the existence of probability measures satisfying given sets of conditions and an equivalence of consistent preferences and families of probability measures. Moreover, countable additivity of probabilities is seen to be a consequence of elementary consistency assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.