Abstract

Multi-label learning (MLL) solves the problem that one single sample corresponds to multiple labels. It is a challenging task due to the long-tail label distribution and the sophisticated label relations. Semi-supervised MLL methods utilize a small-scale labeled samples and large-scale unlabeled samples to enhance the performance. However, these approaches mainly focus on exploring the data distribution in feature space while ignoring mining the label relation inside of each instance. To this end, we proposed a Dual Relation Semi-supervised Multi-label Learning (DRML) approach which jointly explores the feature distribution and the label relation simultaneously. A dual-classifier domain adaptation strategy is proposed to align features while generating pseudo labels to improve learning performance. A relation network is proposed to explore the relation knowledge. As a result, DRML effectively explores the feature-label and label-label relations in both labeled and unlabeled samples. It is an end-to-end model without any extra knowledge. Extensive experiments illustrate the effectiveness and efficiency of our method1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.