Abstract

Mortar finite element methods allow for a flexible and efficient coupling of arbitrary nonconforming interface meshes and are by now quite well established in nonlinear contact analysis. In this paper, a mortar method for three-dimensional (3D) finite deformation contact is presented. Our formulation is based on so-called dual Lagrange multipliers, which in contrast to the standard mortar approach generate coupling conditions that are much easier to realize, without impinging upon the optimality of the method. Special focus is set on second-order interpolation and on the construction of novel discrete dual Lagrange multiplier spaces for the resulting quadratic interface elements (8-node and 9-node quadrilaterals, 6-node triangles). Feasible dual shape functions are obtained by combining the classical biorthogonality condition with a simple basis transformation procedure. The finite element discretization is embedded into a primal-dual active set algorithm, which efficiently handles all types of nonlinearities in one single iteration scheme and can be interpreted as a semismooth Newton method. The validity of the proposed method and its efficiency for 3D contact analysis including Coulomb friction are demonstrated with several numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.