Abstract

Graphene oxide/PtNPs/Fe2 O3 "dual-propelled" catalytic and fuel-free rotary actuated magnetic Janus micromotors modified with the lanbiotic Nisin are used for highly selective capture/inactivation of gram-positive bacteria units and biofilms. Specific interaction of Nisin with the Lipid II unit of Staphylococcus Aureus bacteria in connection with the enhanced micromotor movement and generated fluid flow result in a 2-fold increase of the capture/killing ability (both in bubble and magnetic propulsion modes) as compared with free peptide and static counterparts. The high stability of Nisin along with the high towing force of the micromotors allow for efficient operation in untreated raw media (tap water, juice and serum) and even in blood and in flowing blood in magnetic mode. The high selectivity of the approach is illustrated by the dramatically lower interaction with gram-negative bacteria (Escherichia Coli). The double-propulsion (catalytic or fuel-free magnetic) mode of the micromotors and the high biocompatibility holds considerable promise to design micromotors with tailored lanbiotics that can response to the changes that make the bacteria resistant in a myriad of clinical, environmental remediation or food safety applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call