Abstract

Recordings were made from secondary vestibular axons in the medial longitudinal fasciculus (MLF) of barbiturate-anesthetized squirrel monkeys. Antidromic stimulation techniques were used to identify the axons as belonging to one of three classes of neurons: vestibulo-oculo-collic (VOC) neurons project both to the extraocular motor nuclei and to the spinal cord; vestibulo-ocular (VO) neurons do not have a spinal projection; and vestibulocollic (VC) neurons do not have an oculo-motor projection. Galvanic stimulation was used to show that axons of all three classes received excitatory inputs from one labyrinth and inhibitory inputs from the other. VOC axons were confined to the MLF contralateral to the labyrinth from which they were excited. They made up more than half of the vestibular axons descending in the contralateral medial vestibulospinal tract (MVST), but less than one-quarter of those ascending in the contralateral MLF to the level of the oculomotor nucleus. Spinal projections were restricted to cervical segments with about half of the axons reaching segment C6. Conduction velocities, measured for C6-projecting axons, were similar for VOC and VC axons and were typically 25-50 m/s. Unlike the situation in the rabbit (Akaike et al. 1973) and cat (Akaike 1983), none of the MVST axons had conduction velocities greater than 75 m/s. The morphology of VOC neurons was studied by injection of horseradish peroxidase (HRP) into 60 physiologically identified axons in the MLF. Since individual axons were only stained for short distances, it was not possible to ascertain their complete branching patterns. Labeled fibers could be traced to an origin in and around the ventral lateral vestibular nucleus. This localization was confirmed by comparing the distributions within the vestibular nuclei of neurons retrogradely labeled from the upper cervical spinal cord (this study) and from the oculomotor nucleus (McCrea et al. 1987a; Highstein and McCrea 1988). VOC axons reached the contralateral MLF at the level of the abducens nucleus and immediately divided into an ascending and a descending, usually thicker, branch. Seven VOC axons could be traced to the extraocular motor nuclei; three terminated in the medial aspect of the oculomotor nucleus bilaterally and four terminated in the medial aspect of the contralateral abducens nucleus. The former axons may be part of a crossed, excitatory anterior-canal pathway; the latter, part of a similar horizontal-canal pathway. There were no terminations in the trochlear nucleus even though 12 labeled fibers passed close to it.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call