Abstract

Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studies have shown that in anurans their molecular separation is still underway. Sulfated steroids function as migratory pheromones in lamprey and have recently been identified as natural vomeronasal stimuli in rodents. Here we identified sulfated steroids as the first known class of vomeronasal stimuli in the amphibian Xenopus laevis. We show that sulfated steroids are detected and concurrently processed by the two distinct olfactory subsystems of larval Xenopus laevis, the main olfactory system and the vomeronasal system. Our data revealed a similar but partially different processing of steroid-induced responses in the two systems. Differences of detection thresholds suggest that the two information channels are not just redundant, but rather signal different information. Furthermore, we found that larval and adult animals excrete multiple sulfated compounds with physical properties consistent with sulfated steroids. Breeding tadpole and frog water including these compounds activated a large subset of sensory neurons that also responded to synthetic steroids, showing that sulfated steroids are likely to convey intraspecific information. Our findings indicate that sulfated steroids are conserved vomeronasal stimuli functioning in phylogenetically distant classes of tetrapods living in aquatic and terrestrial habitats.

Highlights

  • The mammalian olfactory system is typically defined by at least two anatomically and molecularly segregated subsystems, the most prominent being the main and vomeronasal system

  • We found steroid-responsive sensory neurons in the vomeronasal organ (VNO) and the main olfactory epithelium (MOE) (Figure 1C)

  • All cells that responded to sulfated steroids (VNO and MOE) showed calcium transients upon stimulation with high K+ bath solution, indicating that they were sensory neurons (Dittrich et al, 2014)

Read more

Summary

Introduction

The mammalian olfactory system is typically defined by at least two anatomically and molecularly segregated subsystems, the most prominent being the main and vomeronasal system. The main olfactory system generally senses volatile chemicals primarily signaling food and environmental cues, whereas the vomeronasal system mainly detects pheromones, which signal intraspecific social. Characteristic morphological sensory neuron types, as well as genetic components of both the mammalian main olfactory epithelium (MOE) and vomeronasal organ (VNO) coexist in their unique olfactory epithelium. It mediates all of the behavioral responses known to be associated with the sense of smell (Hamdani and Døving, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call