Abstract

Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any process change/anomaly in a timely and accurate manner for potential corrective operations. Real-time thermal image streams captured from AM processes are regarded as most informative signatures of the process stability. Existing state-of-the-art studies on thermal image streams focus merely on in situ sensing, feature extraction, and their relationship with process setup parameters and material properties. The objective of this paper is to develop a statistical process control (SPC) approach to detect process changes as soon as it occurs based on predefined distribution of the monitoring statistics. There are two major challenges: 1) complex spatial interdependence exists in the thermal images and current engineering knowledge is not sufficient to describe all the variability, and 2) the thermal images suffer from a large data volume, a low signal-to-noise ratio, and an ill structure with missing data. To tackle these challenges, multilinear principal component analysis (MPCA) approach is used to extract low dimensional features and residuals. Subsequently, an online dual control charting system is proposed by leveraging multivariate T2 and Q control charts to detect changes in extracted low dimensional features and residuals, respectively. A real-world case study of thin wall fabrication using a Laser Engineered Net Shaping (LENS) process is used to illustrate the effectiveness of the proposed approach, and the accuracy of process anomaly detection is validated based on X-ray computed tomography information collected from the final build offline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.