Abstract

Despite being a low-cost, portable and safe medical imaging technique, transcranial ultrasound imaging is not used widely in adults because of the severe degradation and distortion of signals caused by the skull. Full-waveform inversion (FWI) has recently been found to have potential as an effective method for transcranial ultrasound tomography to obtain high-quality, subwavelength-resolution acoustic models of the brain using low-frequency ultrasound data. In this study is the first demonstration of this method in recovering a high-resolution 2-D reconstruction of a brain and skull ultrasound imaging phantom using experimentally acquired data. A 2:5 scale brain phantom encased within a 3-D-printed skull-mimicking layer was created to simulate a clinical transcranial imaging target. To obtain tomographic ultrasound data on the brain and skull phantom, a tomographic ultrasound acquisition system was designed and implemented using commercially available low-frequency cardiac probes. FWI reconstructions of the brain and skull phantom were performed using the acquired tomographic data and were compared with corresponding synthetic reconstructions. This comparison was used to evaluate the feasibility of the proposed imaging system when employing different transducer array configurations. We demonstrate the successful FWI reconstruction of the brain phantom within the skull mimic from experimentally acquired tomographic ultrasound data. To mitigate the effects of the skull-mimicking material, a reflection-matching algorithm was applied to model the morphology of the skull layer prior to performing the inversion. The findings of this study provide a promising step toward the clinical use of FWI for transcranial ultrasound imaging in adults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.