Abstract
Optimal transportation with capacity constraints, a variant of the well-known optimal transportation problem, is concerned with transporting one probability density $$f \in L^1(\mathbf {R}^m)$$ onto another one $$g \in L^1(\mathbf {R}^n)$$ so as to optimize a cost function $$c \in L^1(\mathbf {R}^{m+n})$$ while respecting the capacity constraints $$0\le h \le \bar{h}\in L^\infty (\mathbf {R}^{m+n})$$ . A linear programming duality for this problem was first proposed by Levin. In this note, we prove under mild assumptions on the given data, the existence of a pair of $$L^1$$ -functions optimizing the dual problem. Using these functions, which can be viewed as Lagrange multipliers to the marginal constraints $$f$$ and $$g$$ , we characterize the solution $$h$$ of the primal problem. We expect these potentials to play a key role in any further analysis of $$h$$ . Moreover, starting from Levin’s duality, we derive the classical Kantorovich duality for unconstrained optimal transport. In tandem with results obtained in our companion paper [Korman et al. J Convex Anal arXiv:1309.3022 [8] (in press)], this amounts to a new and elementary proof of Kantorovich’s duality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.