Abstract

The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and protein for food-producing animals directly competes with their allocation for human consumption. Alternatively, de-fatted marine microalgal biomass generated from the potential biofuel production may be a viable replacement of corn and soybean meal due to their high levels of protein, relatively well-balanced amino acid profiles, and rich contents of minerals and vitamins, along with unique bioactive compounds. Although the full-fatted (intact) microalgae represent the main source of omega-3 (n-3) polyunsaturated fatty acids including docohexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the de-fatted microalgal biomass may still contain good amounts of these components for enriching DHA/EPA in eggs, meats, and milk. This review is written to highlight the necessity and potential of using the de-fatted microalgal biomass as a new generation of animal feed in helping address the global energy, food, and environmental issues. Nutritional feasibility and limitation of the biomass as the new feed ingredient for simple-stomached species are elaborated. Potential applications of the biomass for generating value-added animal products are also explored.

Highlights

  • The projected rise of global population from the current 7 billion to over 9 billion within the several decades [1,2] garners urgent needs for renewable energy and alternative foods

  • Biofuels are defined as the energy derived from raw biological materials, and show promise in harnessing adequate energy and reducing greenhouse gas emissions associated with fossil fuels

  • The increasing use of these feedstocks for biodiesel and bioethanol production has driven up their global prices

Read more

Summary

Introduction

The projected rise of global population from the current 7 billion to over 9 billion within the several decades [1,2] garners urgent needs for renewable energy and alternative foods. The de-fatted biomass of microalgal species, derived from the biofuel production research, has only recently been shown feasibility in replacing corn and soybean meal in diets for poultry, swine, and cattle. Broiler chicks fed a diet containing essential amino acids (Met, Lys, Ile, Thr, Trp, and Val) co-supplemented with 7.5% of the de-fatted biomass did not show growth performance differences from the control group. In a laying hen study, a 7.5% replacement of corn and soybean meal with the de-fatted microalgal biomass did not negatively affect hen production or health parameters, yet significantly increased the redness and decreased both the lightness and yellowness of the egg yolks [47]. Animals fed the whole Spirulina sp. samples accumulated greater degrees of cytotoxic lymphocytes that were critical to innate immunity, and had elevated phagocytic activity and antibody production [78]

Conclusions
United States Census Bureau: International Database
27. Combs GF
31. Ahmad MR
Findings
53. United States Department of Agriculture
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.