Abstract

Grazing angle dependencies of radar cross section (RCS) are shown to differ for horizontally (HH) and vertically (VV) polarized X-band marine radar sea scatter from internal gravity wave (IGW) spatial modulations. For these internal gravity waves, observed off the coast of North Carolina, an IGW crest-to-trough modulation of 30-dB is observed at HH at 1/spl deg/, but only 10 dB at VV. The HH RCS decreases with increasing grazing angle, roughly to the minus one power, whereas VV RCS increases as for the composite model, but only to the first power. The HH/VV RCS ratio is 10 dB at 1/spl deg/, again opposite that expected from the two scale model, and decreases to -10 dB at 10/spl deg/ grazing. The two scale model with wave-current modulation of short waves by wave-current interaction predicts a decrease in modulation as grazing is approached, opposite the results presented. The authors suggest an influence of wave breaking radar scatter sources to explain these internal wave results, similar to arguments made for breaking wave scatter occurring near fronts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.