Abstract

A reflecting cell allowing the dynamic and independent control of the reflection phase of two perpendicular linearly-polarized waves is presented. This capability is useful for the implementation of dual-polarized beam-reconfigurable reflectarrays, as well as for new reflector functionalities such as linear/circular polarization-flexibility and polarization-twisting with simultaneous phase control. The concept is demonstrated on a unit cell operating at 8 GHz, using surface-mounted diodes. In addition to its polarization capability, the cell implements a new concept to overcome the usual tradeoff between phase range and loss in monolayer reflective cells, using a combination of PIN and varactor diodes. For each linearly-polarized component, a dynamic phase range over 360° is achieved at 8 GHz under normal incidence, with 4 dB and 2 dB of maximum and average loss, respectively. The modeling of the cell in a general periodic environment, along with measurements in a waveguide simulator, show that similar performance is preserved within a 5% bandwidth and under TE and TM oblique incidences up to 45°. The cell size is only 0.42? at 8 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.