Abstract

This letter presents a simple, compact, low-cost, low-profile, dual-polarization, suspended patch antenna design to operate in 3.3-3.8 GHz band for 5G base stations. The proposed antenna comprises a main radiating patch, a secondary parasitic patch, modified L-probe feeds, and a vertical metal wall. The main patch is capacitively driven by two feeds for dual (±45° slant) polarization. The vertical metal wall is used to increase the port isolation. The parasitic patch also helps further improvement of input impedance matching (|S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> |, |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">22</sub> |) and port isolation (|S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21</sub> |). The prototyped antenna has |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> |, |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">22</sub> | <; -10 dB and |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> |, |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">22</sub> | <; -15 dB impedance bandwidth of 45% and 36%, respectively. Port isolation is |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21</sub> | <; -30 dB in the desired operating band. Stable and symmetric radiation patterns with half-power beamwidths of 56°-65° are obtained in E-/-H-planes. The gain of the antenna is 8.95 ± 0.25 dBi. Numerical calculations and experimental results are reported and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.