Abstract

A dual-polarity linear ion trap (LIT) mass spectrometer was developed in this study, and the method for simultaneously controlling and detecting cations and anions was proposed and realized in the LIT. With the application of an additional dipolar DC field on the ejection electrodes of an LIT, dual-polarity mass spectra could be obtained, which include both the mass-to-charge (m/z) ratio and charge polarity information of an ion. Compared with conventional method, the ion ejection and detection efficiency could also be improved by about one-fold. Furthermore, ion-ion reactions within the LIT could be dynamically controlled and monitored by manipulating the distributions of ions with opposite charge polarities. This method was then used to control and study the reaction kinetics of ion-ion reactions, including electron transfer dissociation (ETD) and charge inversion reactions. A dual-polarity collision-induced dissociation (CID) experiment was proposed and performed to enhance the sequence coverage of a peptide ion. Ion trajectory simulations were also carried out for concept validation and system optimization. Graphical Abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.