Abstract

In view of the fact that memory effects associated with instrument calibration hinder the use of many mass-to-charge ( m/ z) ratios and tuning standards, identification of robust, comprehensive, inexpensive, and memory-free calibration standards is of particular interest to the mass spectrometry community. Glucose and its isomers are known to have a residue mass of 162.05282 Da; therefore, both linear and branched forms of polyhexose oligosaccharides possess well-defined masses, making them ideal candidates for mass calibration. Using a wide range of maltooligosaccharides (MOSs) derived from commercially available beers, ions with m/z ratios from approximately 500 to 2500 Da or more have been observed using Fourier transform ion cyclotron resonance mass spectrometry (FT–ICR–MS) and time-of-flight mass spectrometry (TOF–MS). The MOS mixtures were further characterized using infrared multiphoton dissociation (IRMPD) and nano-liquid chromatography/mass spectrometry (nano-LC/MS). In addition to providing well-defined series of positive and negative calibrant ions using either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI), the MOSs are not encumbered by memory effects and, thus, are well-suited mass calibration and instrument tuning standards for carbohydrate analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call