Abstract

The performance of a novel dual dye laser system synchronously pumped by the frequency doubled output of a mode-locked CW-YAG laser is evaluated in relation to pulsewidth, pulse substructure, pulse spectral width and timing jitter. The behavior of the system is adequately described by a theoretical model which includes the time dependent gain and losses due to frequency bandwidth, cavity length mismatch and output coupler. The jitter is significantly reduced from that obtained with CW gas laser pumping as a result of the shorter pump pulse (50 ns instead of ≈100 ps). A routine operating condition uses 2-plate birefringen filters, 0.8 W pump power at 532 nm, to yield two 2.0 ps pulses having a cross correlation width of 3.8 ps, and 30 mW average power from each laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.