Abstract

It remains challenging to develop hydrogels with comprehensive mechanical properties including ultrahigh strength, toughness and rapid self-recovery. Herein, dual physical crosslinking strategy was used to develop novel nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal (CNC-g-PVP). The hydrogels were fabricated via in situ copolymerization of acrylic acid (AA) and acrylamide (AM) in presence of CNC-g-PVP and subsequent introduction of Fe3+ ions. CNC-g-PVP induced the first crosslinking through strong cooperative hydrogen bonds existing between PVP chains grafted onto CNCs and amide groups from P(AM-co-AA) chains. Fe3+ triggered the second crosslinking by forming coordination bonds with –COO− groups. The cooperative hydrogen bonds enhanced the interfacial compatibility between CNC-g-PVP nanofillers and hydrogel matrix, and served as fast recoverable sacrificial bonds. As a result, the hydrogels exhibited high tensile strength (1.89–2.51 MPa), remarkable toughness (6.01–6.81 MJ/m3), rapid self-recovery (83.4–97.8% recovery of hysteresis loop within 5 min) and favourable fatigue resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.