Abstract

The combination of NiIIX2 salts with a bipyridine-type ligand and aromatic carbonyl-based chromophores has emerged as a benchmark precatalytic system to efficiently conduct cross-couplings mediated by light. Mechanistic studies have led to two scenarios in which Ni0 is proposed as the catalytic species. Nonetheless, in none of these studies has a NiII to Ni0 photoreduction been evidenced. By exploiting UV-visible, nuclear magnetic resonance, resonance Raman, electron paramagnetic resonance, and dynamic light scattering spectroscopies and also transmission electron microscopy, we report that, when photolyzed by UVA in alcohols, the structurally defined [NiII2(μ-OH2)(dtbbpy)2(BPCO2)4] complex 1 integrating a benzophenone chromophore is reduced into a diamagnetic NiI dimer of the general formula [NiI2(dtbbpy)2(BPCO2)2]. In marked contrast, in THF, photolysis led to the fast formation of Ni0, which accumulates in the form of metallic ultrathin Ni nanosheets characterized by a mean size of ∼100 nm and a surface plasmon resonance at 505 nm. Finally, it is shown that 1 combined with UVA irradiation catalyzes cross-couplings, that is, C(sp3)-H arylation of THF and O-arylation of methanol. These results are discussed in light of the mechanisms proposed for these cross-couplings with a focus on the oxidation state of the catalytic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.