Abstract

The need to simultaneously reduce vehicle emissions and increase the safety of passengers is encouraging the automotive industry to incorporate new technologies and materials into today's vehicles. To remain competitive, the steel industry has developed steel grades with increased energy absorbing properties allowing down gauging of body in white components to address the competition from alternative materials such as aluminium alloys and composites. Two of the more important developments are the introduction of dual phase (DP) and transformation induced plasticity (TRIP) grades for the automotive industry. These grades offer superior strength/formability and work hardening properties compared to conventional high strength grades of similar tensile strength. Utilising thinner gauge components with increased energy absorbing properties would permit addressing the mass/safety issues by the automotive industry. This paper relates the crash performance of a range of both commercial and experimental DP and TRIP grades. Dynamic tensile testing was performed at low and very high strain rates within the range of 0·001–200 s−1, to allow an extensive analysis of the effect of strain rate on the material properties. Crash testing was also performed on closed top hat sections at low, medium and high strain rates and the results compared to the dynamically tested tensile specimens. This study helped clarify the enhanced performance offered by high strength DP and TRIP strip steel grades during dynamic tensile testing and impact loading conditions. This advantageous behaviour is attributed to the favourable microconstituents present in these novel grades and their deformation characteristics. This paper concentrates only on the crash properties measured from dynamic tensile tests. The microstructural analysis is presented in a separate publication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call