Abstract

Energy is the basis of survival for all organisms, and proliferative tumuor cells rely primarily on glycolysis to obtain energy to meet high bioenergetic demands. Glycolysis inhibition has emerged as a key target for cancer therapeutic applications. However, the therapeutic efficiency of glycolysis suppression is restrained by the mutual compensation of multiple energy-generating pathways and biological barriers in the complex tumuor microenvironment (TME). In this study, we developed polydopamine (PDA)-coated porous CeO2-x nanorods with metformin (MET) and glucose oxidase (GOx) co-loading and bovine serum albumin (BSA) encapsulation (denoted as CPGMB) for dual-pathway glycolysis inhibition-boosted bioenergetic therapy with photothermal/chemodynamic therapy (PTT/CDT). MET and GOx are released due to the weakly acidic TME and the photothermal effect to suppress glycolysis via hexokinase 2 (HK2) inhibition and glucose deprivation pathways, respectively. Interestingly, H2O2 produced by GOx-catalysed glucose oxidation was converted into O2 by Ce4+, resulting in closed-loop glucose depletion, further potentiating glycolysis restraint via hypoxia relief. Meanwhile, H2O2 could also be transformed into •OH by Ce3+ for CDT. Furthermore, the photothermal effect of CPGMB ablated the cancer cells and amplified •OH production. In vitro and in vivo experiments confirmed the anti-tumour efficacy and biosafety of CPGMB. This study presents a novel strategy for a synergistic bioenergetic antitumour therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call