Abstract

To meet the demands of highly integrated and miniaturized radio frequency front-end (RFFE) modules, multi-passband filters which support multi-channel compounding come to the foreground. In this work, we proposed a new design of a dual-passband surface acoustic wave (SAW) filter based on a 32°YX-LiNbO3 (LN)/SiO2/SiC multilayered structure. The filter is of a standalone ladder topology and comprises dual-mode resonators, in which the shear horizontal (SH) mode and high-order SH mode are simultaneously excited through electrode thickness modulation. The impact of electrode thickness on the performance of the dual-mode resonator was systematically investigated by the finite element method (FEM), and resonators were prepared and verified the simulation results. The electromechanical coupling coefficients (K2) of the SH modes are 15.1% and 17.0%, while the maximum Bode-Q (Qmax) values are 150 and 247, respectively, for the fabricated resonators with wavelengths of 1 μm and 1.1 μm. In terms of the high-order SH modes in these resonators, the K2 values are 9.8% and 8.4%, and Qmax values are 190 and 262, respectively. The fabricated dual-band filter shows the center frequencies (fc) of 3065 MHz and 4808 MHz as two bands, with 3-dB fractional bandwidths (FBW) of 5.1% and 5.9%, respectively. Such a dual-band SAW filter based on a conventional ladder topology is meaningful in terms of its compact layout and diminished area occupancy. This work provides a promising avenue to constitute a high-performance dual-passband SAW filter for sub-6 GHz RF application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call