Abstract

Accurate estimation of Li-ion battery state of health (SOH) is essential to ensure battery safety and vehicle operation. Here, this paper proposes a dual particle swarm optimization algorithm-extreme gradient boosting algorithm (DP-X) with the battery's charging voltage and incremental capacity (IC) data. First, the features are extracted from the voltage curve and the IC curve of each charging cycle through curve compression and interpolation. Then, this paper utilizes the PSO-XGBoost (P-X) algorithm to optimize the selected features and reduce the dimensionality of the features. Finally, the P-X algorithm was applied to combine with the optimized features to adjust the model's hyperparameters and estimate the SOH. Experimental results show that the maximum SOH estimation error of the dual P-X algorithm is less than 2 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.