Abstract

A novel dual-parameter optical fiber sensor based on a single-mode fiber (SMF) down-taper and multimode fiber (MMF) is proposed and demonstrated. The sensor structure is formed by cascading a down-taper and MMF through a segment of SMF. The transmission spectrum exhibits response of the interference between core and different cladding modes. Two interference dips can be observed within a certain range of detection. Due to the different wavelength shifts of the selected two dips, simultaneous measurement of temperature and liquid level can be achieved. Experiment results indicate a good linear relation between the wavelength shift and external parameters (temperature and liquid level). The measured temperature sensitivities are 0.02nm/°C and 0.031nm/°C, and liquid level sensitivities are 0.022nm/mm and 0.07nm/mm, respectively. In addition, the fiber sensor has the advantages of compact size, simple fabrication and cost-effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.