Abstract

A dual optimization approach to nanoparticle catalysis is reported in which both the composition of a bimetallic nanoparticle and the electronic properties of the supporting polystyrene-based polymer can be varied to optimize reactivity and chemoselectivity in nitroarene reductions. Ruthenium–cobalt nanoparticles supported on polystyrene are shown to catalyze nitroarene reductions at room temperature with exceptional activity, as compared with monometallic ruthenium catalysts. Both the identity of the second metal and the M1/M2 ratio show a profound effect on the chemoselectivity of nitroarene reductions. These polymer-supported bimetallic catalysts are shown to react with nearly complete chemoselectivity for nitro group reduction over a variety of easily reducible functional groups. The electronic properties of the supporting polymer also have a significant impact on catalysis, in which electron-deficient polystyrenes enable 100% conversion to the aniline product in just 20 min at room temperature. Polym...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.