Abstract

In measuring specific conditions in the real world, there are many situations where both the oxygen concentration and the temperature have to be determined simultaneously. Here we describe a dual optical sensor for oxygen and temperature that can be adapted for different applications. The measurement principle of this sensor is based on the luminescence decay times of the oxygen-sensitive ruthenium complex tris-4,7-diphenyl-1,10-phenanthroline ruthenium(III) [Rudpp] and the temperature-sensitive europium complex tris(dibenzoylmethane) mono(5-amino-1,10-phenanthroline)europium(III) [Eudatp]. The excitation and emission spectra of the two luminophores overlap significantly and cannot be discriminated in the conventional way using band pass filters or other optical components. However, by applying both the frequency and time domain techniques, we can separate the signals from the individual decay time of the complexes. The europium complex is entrapped in a poly(methyl methacrylate) (PMMA) layer and the ruthenium complex is physically adsorbed on silica gel and incorporated in a silicone layer. The two layers are attached to each other by a double sided silicone based tape. The europium sensing film was found to be temperature-sensitive between 10 and 70 °C and the ruthenium oxygen-sensitive layer can reliably measure between 0 and 21% oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.